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Abstract

In this paper, we investigate the phenomenon of conjugate free convection in a semi-infinite porous medium above a

heated finite plate. Numerical solutions of the full governing equations for the fluid region, coupled to the heat con-

duction equation in the finite plate, are obtained for a wide range of the non-dimensional parameters appearing in the

problem, which are the Rayleigh number, Ra, the ratio of the thermal conductivities of the finite plate and the fluid, k,

and the aspect ratio of the finite plate, k, and a detailed description of the effects of these parameters on the charac-

teristics of the fluid flow and the heat-transfer in the fluid is provided. For the high Rayleigh number regime, when a

convective boundary-layer is assumed, the number of the non-dimensional parameters reduce to two and the results

provided by this formulation show good agreement with the numerical results. In addition, for Ra � 1 a formulation

which assumes one-dimensional heat conduction in the plate, is developed and provides computationally inexpensive

results for the average conjugate boundary temperature and Nusselt number which compare well with the results

obtained by the boundary-layer formulation. � 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Natural convection; Conjugate; Boundary-layer; Horizontal; Finite plate; Porous medium; Numerical solutions

1. Introduction

Convective heat transfer in porous media has re-

ceived a great deal of attention in recent years due to its

importance in various technological applications such as

geothermal systems, grain storage, fibre and granular

insulation, cooling of electronic systems, packed-sphere

beds, chemical catalytic reactors, groundwater hydrol-

ogy, petroleum reservoirs, coal combustors, nuclear

waste repositories and filtration, see books by Nakay-

ama [1], Nield and Bejan [2], Ingham and Pop [3,4],

Vafai [5] and Pop and Ingham [6].

Free convection boundary-layer flow in a porous

medium above a heated horizontal surface, or below a

cooled horizontal surface, was first considered by Cheng

and Chang [7], who obtained similarity solutions of the

governing equations. More recently, Merkin and Zhang

[8], Higuera and Weidman [9] and Chandhary et al. [10]

have published very detailed analytical and numerical

solutions to this type of problem. In these studies cited,

the surface was assumed to be of zero thickness and

therefore any conduction in the wall was neglected.

However, in many practical situations, especially those

concerned with the design of thermal insulation, the

conduction in the wall can have an important effect on

the free convection flow adjacent to the surface. The

conjugate free convection from either a vertical or a

horizontal surface which is embedded in a porous me-

dium has been central to a number of recent papers, e.g.

Kimura et al. [11], Vynnycky and Kimura [12,13], Hig-

uera and Weidman [9], Lesnic et al. [14], Pop and

Merkin [15], Higuera [16] and Higuera and Pop [17]. An

excellent review of this topic can be found in the review

paper by Kimura et al. [18].
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The most comprehensive analytical and numerical

investigations of such problems are those of Vynnycky

and Kimura [12,13]. They obtained computational so-

lutions to the governing heat and momentum (Darcy)

equations when both the longitudinal and transverse

conduction effects in the wall were present for the

problems of free convection due to a heated vertical

plate in both the steady and the transient case. The

horizontal configuration for the free convection in a

porous medium near an upward facing cooled (or a

downward facing heated) plate which has a finite length

was investigated by Kimura et al. [11] and Higuera and

Weidman [9] when the plate has zero thickness.

In this paper, we examine the problem of conjugate

free convection heat transfer from an upward facing

heated (or a downward facing cooled) finite plate which

has a non-zero thickness, and is adjacent to a semi-in-

finite porous medium when both the longitudinal and

transverse conduction effects in the plate are present.

First, we provide a mathematical formulation for the

full problem, identifying the relevant non-dimensional

parameters, namely, the Rayleigh number, Ra, the

thermal conduction ratio between the solid and the po-

rous medium, k, and the plate aspect ratio between the

thickness of the plate and half the longitudinal length of

the plate, k. The high Rayleigh number regime is treated

in two ways: first, by coupling the boundary-layer flow

within the porous medium to the two-dimensional con-

duction within the plate and solving the resulting

problem numerically, and second, by performing a one-

dimensional averaging process over the length of the

plate to obtain the average conjugate boundary tem-

perature and mean Nusselt number. The full equations

are then solved numerically by finite-difference tech-

niques using a transformation from Cartesian to elliptic

coordinates for the fluid-saturated porous medium re-

gion. This scheme is both accurate and robust and has

recently been used successfully for similar problems, see

Vynnycky and Kimura [19], Vynnycky and Pop [20] and

Vynnycky et al. [21]. We have compared the solutions

obtained by the different solution procedures over a

wide range of the values of the parameters involved.

2. Governing equations

The configuration of the problem under consider-

ation is schematically shown in Fig. 1. A horizontal

plate has a thickness a, and it is made up of three parts,

namely, a plate of finite length 2b and two thermally

insulating, semi-infinite plates, which are each attached

to the opposite ends of the finite plate to produce a

single infinite non-homogeneous horizontal plate. The

bottom surface of the finite plate is held at a fixed

temperature Tc. We are interested in the temperature

within the finite plate and above the plate, where there is

a porous medium which is at a uniform ambient tem-

perature, T1, far from the plate, where Tc > T1 and it is

also assumed that the porous medium is isotropic and

homogeneous.

Nomenclature

a thickness of the plate

b half longitudinal length of the plate

g magnitude of the acceleration due to gravity

kf effective thermal conductivity of the con-

vective fluid

ks thermal conductivity of the solid plate

k ratio of the thermal conductivities in the

solid plate and the fluid

K permeability of the isotropic porous medium

Nu local Nusselt number

Nu average Nusselt number

Ra Rayleigh number, Ra ¼ gKbðTc�T1Þb
am

Tc constant temperature at the bottom surface

of the solid plate

T1 temperature at infinity

u, v fluid velocity components in the x and y

directions, respectively

ub non-dimensional average fluid velocity on the

conjugate boundary

x, y horizontal and vertical Cartesian coordinate,

respectively

X shifted x coordinate, xþ 1

Y transformed y coordinate, Ra1=3y
a effective thermal diffusivity of the porous

medium

b coefficient of the thermal expansion

f similarity variable, Y =X 2=3

f̂f transformed f variable, h1=3
0 f

hf non-dimensional temperature in the fluid

medium

hs non-dimensional temperature in the solid

plate

hb non-dimensional conjugate boundary tem-

perature

hb non-dimensional average conjugate bound-

ary temperature

k aspect ratio of the solid plate

m kinematic viscosity of the fluid

n, g elliptical coordinates

n̂n transformed x orX coordinate, 1� ð1� xÞ2=3
or X 2=3

w streamfunction
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The two-dimensional steady-state equations of the

Darcy flow model, namely, the mass, momentum and

energy conservation laws are (see Nield and Bejan [2])

ou
ox

þ ov
oy

¼ 0; ð1Þ

ou
oy

� ov
ox

¼ � gKb
m

oTf
ox

ð2Þ

and

u
oTf
ox

þ v
oTf
oy

¼ a
o2Tf
ox2

�
þ o2Tf

oy2

�
; ð3Þ

where u, v are the fluid velocity components in the x, y

directions, respectively, g is the gravitational accelera-

tion, K is the permeability of the isotropic porous me-

dium, b is the coefficient of thermal expansion, m is the

kinematic viscosity of the fluid, Tf is the temperature of

the fluid-saturated porous medium and a is the effective

thermal diffusivity of the porous medium. In order to

effect the coupling between the fluid flow and the fluid

temperature fields, the Oberbeck–Boussinesq approx-

imation has been employed by introducing the coeffi-

cient of thermal expansion b in the buoyancy term in

Eq. (2).

The heat transfer in the solid plate is described by the

steady-state heat conduction equation,

o2Ts
ox2

þ o2Ts
oy2

¼ 0; ð4Þ

where Ts denotes the temperature in the solid plate, and

the boundary conditions on the plate may now be ex-

pressed as follows:

w ¼ 0 on y ¼ 0; �1 < x < 1; ð5aÞ

Tf ¼ Ts on y ¼ 0; jxj6 b; ð5bÞ

kf
oTf
oy

¼ ks
oTs
oy

on y ¼ 0; jxj6 b; ð5cÞ

oTf
oy

¼ 0 on y ¼ 0; jxj > b; ð5dÞ

Ts ¼ Tc on y ¼ �a; jxj6 b; ð5eÞ

oTs
ox

¼ 0 on x ¼ 	b; �a6 y6 0; ð5fÞ

where kf and ks denote the thermal conductivities of the

fluid and of the solid plate, respectively, and the stream-

function w is defined such that the continuity equation

(1) is satisfied identically, thus u ¼ ow=oy and v ¼ �ow=
dx.

The boundary conditions at large distances from the

finite heated plate are

v ! 0; Tf ! T1 as x ! 	1; y P 0; ð6aÞ

u ! 0; Tf ! T1 as y ! 1; �1 < x < 1: ð6bÞ

By introducing the non-dimensional variables

x̂x ¼ x
b
; ŷy ¼ y

b
; ŵw ¼ w

a
; ĥhf ¼ Tf � T1

Tc � T1
;

ĥhs ¼
Ts � T1
Tc � T1

ð7Þ

and subsequently, on dropping the hats for convenience,

Eqs. (2)–(4) become

o2w
ox2

þ o2w
oy2

¼ �Ra
ohf

ox
; ð8aÞ

o2hf

ox2
þ o2hf

oy2
¼ ow

oy
ohf

ox
� ow

ox
ohf

oy
; ð8bÞ

o2hs

ox2
þ o2hs

oy2
¼ 0; ð8cÞ

where the Rayleigh number is defined by Ra ¼
ðgKbðTc � T1ÞbÞ=am, whilst the boundary conditions

(5a)–(5f), and (6a) and (6b) in their non-dimensional

form become

w ¼ 0 on y ¼ 0; �1 < x < 1; ð9aÞ

hf ¼ hs on y ¼ 0; jxj6 1; ð9bÞ

ohf

oy
¼ k

ohs

oy
on y ¼ 0; jxj6 1; ð9cÞ

ohf

oy
¼ 0 on y ¼ 0; jxj > 1; ð9dÞ

hs ¼ 1 on y ¼ �k; jxj6 1; ð9eÞ

ohs

ox
¼ 0 on x ¼ 	1; �k6 y6 0 ð9fÞ

and

ow
ox

! 0; hf ! 0 as x ! 	1; y P 0; ð10aÞ

Fig. 1. Physical configuration.
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ow
oy

! 0; hf ! 0 as y ! 1; �1 < x < 1; ð10bÞ

where k ¼ a=b and k ¼ ks=kf denote the aspect ratio

of the conducting plate and the ratio of the thermal

conductivities in the solid plate and the fluid, respec-

tively.

3. Mathematical formulation for Ra � 1

When the Rayleigh number is very large then both

viscous and thermal boundary layers, starting at the

locations ð�1; 0Þ and ð1; 0Þ, develop above the plate,

with each boundary-layer mathematically unaware of

the existence of the other. Thus the boundary layers

collide on x ¼ 0, and therefore the solutions are invalid

in the vicinity of the origin. If we let the non-dimen-

sional temperature at the locations ð�1; 0Þ and (1,0) be

denoted by h0, 06 h0 6 1, then there are two possible

situations which may occur in the analysis, namely

0 < h0 6 1 or h0 ¼ 0.

As indicated in Nield and Bejan [2], in the boundary-

layer the normal component of the fluid velocity, v, is

small compared with the tangential fluid velocity com-

ponent, u, and derivatives with respect to y of a quan-

tity, such as the fluid velocity and temperature, are large

compared with the derivatives of that quantity with re-

spect to x, and accordingly the terms o2w=dx2 and

o2hf=ox2 can be omitted from Eqs. (8a) and (8b). Scaling

the quantities w and y, and maintaining the balance in

these equations, indicates that the appropriate scalings

are

w ¼ Ra1=3W; y ¼ Ra�1=3Y : ð11Þ

Concentrating on the boundary-layer which develops

from the point ð�1; 0Þ, and using the transformation

x ¼ X � 1 such that the analysis applies to the left half-

side of the physical domain, the transformed equations

become

o2W
oY 2

¼ � ohf

oX
; ð12aÞ

o2hf

oY 2
¼ oW

oY
ohf

oX
� oW

oX
ohf

oY
ð12bÞ

and have to be solved subject to the boundary condi-

tions (9a)–(9f), and (10a) and (10b) which become

W ¼ 0 on Y ¼ 0; 06X 6 1; ð13aÞ

hs ¼ hf on Y ¼ 0; 06X 6 1; ð13bÞ

ohs

oy
¼ r

ohf

oY
on Y ¼ 0; 06X 6 1; ð13cÞ

oW
oY

! 0; hf ! 0 as Y ! 1; ð13dÞ

where the parameter r is given by r ¼ Ra1=3=k. Further,
since fluid only flows into the boundary-layer, we have

only used the inflow boundary conditions for Y ! 1. In

addition, we require boundary conditions at X ¼ 0, and

since we have assumed that the boundary-layer origi-

nates at X ¼ 0, the flow has been taken to be at rest for

X 6 0, thus the boundary conditions at X ¼ 0 are the

following:

W ¼ oW
oX

¼ 0 at X ¼ 0: ð14Þ

Case 0 < h0 6 1. For the purpose of the analytical de-

velopment and the ultimate numerical solution when

0 < h0 6 1, we reformulate Eqs. (12a)–(14), using the

similarity variables as introduced by Cheng and Chang

[7] for the standard free convection problem of a con-

stant wall temperature. On writing

WðX ; Y Þ ¼ X 1=3F ðX ; fÞ; hfðX ; Y Þ ¼ GðX ; fÞ;
f ¼ Y =X 2=3; ð15Þ

Eqs. (12a), (12b) reduce to

F 00 � 2

3
fG0 ¼ �X

oG
oX

; ð16aÞ

G00 þ 1

3
FG0 ¼ X F 0 oG

oX

�
� G0 oF

oX

�
; ð16bÞ

where the primes denote differentiation with respect to f.
Further, the boundary conditions (13a),(13b),(13c) and

(13d) for 06X 6 1 in terms of F and G are given by

F ¼ 0; hs ¼ G;
ohs

oy
¼ r

X 2=3
G0 on f ¼ 0; ð17aÞ

F 0 ! 0; G ! 0 as f ! 1 ð17bÞ

with Eq. (14) automatically satisfied by the choice of the

similarity variables.

Having two conditions which connect the tempera-

ture variables for the fluid and for the solid on the

conjugate boundary, we use the second boundary con-

dition from (17a) for solving the equations in the fluid,

whilst the third boundary condition from (17a) is used

for solving the equations in the solid.

On letting X ! 0, we obtain the following ordinary

differential equations:

F 00 � 2

3
fG0 ¼ 0; G00 þ 1

3
FG0 ¼ 0; ð18Þ

with the boundary conditions

F ¼ 0; G ¼ h0 on f ¼ 0 F 0 ! 0;

G ! 0 as f ! 1 ð19Þ

and these equations, together with their boundary con-

ditions, constitute the initial conditions for the equations

for the fluid region.
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The constant h0 is as yet unknown and it is calculated

as part of the solution procedure when solving the

coupled equations for the fluid and the solid and in or-

der to remove h0 from Eqs. (18) and (19), we make the

canonical substitutions

F ðX ; fÞ ¼ h1=3
0 F̂F ðX ; f̂fÞ; GðX ; fÞ ¼ h0ĜGðX ; f̂fÞ;

f ¼ h�1=3
0 f̂f; ð20Þ

which leave Eqs. (16a)–(19) unaltered, except for the

second and third boundary condition of (17a) and

the second boundary condition of (19). Thus the second

boundary condition of (17a) and that of (19) become

ĜG ¼ hs=h0 and ĜG ¼ 1 on f̂f ¼ 0.

The third boundary condition of (17a) which is em-

ployed in the heat conduction equation for the plate

region, after applying the substitutions (20), takes the

form

ohs

oy
¼ r

X 2=3
h4=3
0 ĜG0 on f̂f ¼ 0: ð21Þ

In order to remove the singular behaviour of this ex-

pression in the vicinity of X ¼ 0, we introduce plane

polar coordinates ðr;/Þ, which are given by X ¼ r cos/,
y ¼ r sin/: Thus the boundary condition (9f) at X ¼ 0

becomes

ohs

o/
¼ 0 on / ¼ � p

2
; ð22aÞ

whilst the boundary condition (21), in the vicinity of

X ¼ 0, is given by

ohs

o/
¼ rh4=3

0 ĜG0ð0; 0Þr1=3 on / ¼ 0; ð22bÞ

where it should be noted that ĜG0ð0; 0Þ is a constant which
can be obtained as G0ð0; 0Þ from the solution of Eqs. (18)

subject to the boundary conditions (19), except that the

boundary condition G ¼ h0 is now G ¼ 1 on f ¼ 0.

The Eq. (8c), in terms of ðX ; yÞ, along with the

boundary conditions (22a) and (22b) has the following

solution:

ĥhsðr;/Þ ¼ 6rh4=3
0 ĜG0ð0; 0Þr1=3 sin / � p

3

� �
ð23Þ

and using this solution we may remove the singularity at

r ¼ 0 by writing hs ¼ ĥhs þ hI

s . Thus hI

s satisfies the

equation

o2hI

s

oX 2
þ o2hI

s

oy2
¼ 0 ð24Þ

and the boundary conditions (9c), (9e) and (9f) are now

given by

ohI

s

oy
¼ rh4=3

0

X 2=3
ĜG0 � oĥhs

oy
on y ¼ 0; 06X 6 1; ð25aÞ

hI

s ¼ 1� ĥhs on y ¼ �k; 06X 6 1; ð25bÞ

ohI

s

oX
¼ 0 on X ¼ 0; �k6 y6 0; ð25cÞ

ohI

s

oX
¼ � oĥhs

oX
on X ¼ 1; �k6 y6 0; ð25dÞ

where on the axis of symmetry X ¼ 1 the boundary

condition (25d) has been introduced for the equation in

the solid.

Since the heating is most intense close to X ¼ 0, in

order to acquire a more accurate solution to the equa-

tions in the plate then a refinement was made in the

X direction by introducing the variable n̂n given by

n̂n ¼ X 2=3. Thus Eq. (24) for the plate region in the ðn̂n; yÞ
co-ordinate system is given by

4

9
n̂n
o2hI

s

on̂n2
� 2

9

ohI

s

on̂n
þ n̂n2 o

2hI

s

oy2
¼ 0; ð26Þ

whilst the boundary conditions (25a)–(25d), using the

expressions (23) and the results for oĥhs=oy and oĥhs=oX ,
can be written in the following form:

ohI

s

oy
¼ A

n̂n

ĜG0ðn̂n3=2; 0Þ
ĜG0ð0; 0Þ

"
� 1

#
on y ¼ 0; 0 < n̂n6 1; ð27aÞ

hI

s ¼ 1� 6Aðn̂n3 þ k2Þ1=6 sin arctanð�k=n̂n3=2Þ � p
3

" #

on y ¼ �k; 06 n̂n6 1; ð27bÞ

ohI

s

on̂n
¼ 0 on n̂n ¼ 0; �k6 y6 0; ð27cÞ

ohI

s

on̂n
¼ 3A

ð1þ y2Þ1=3
sin

2 arctan y þ p
3

� �

on n̂n ¼ 1; �k6 y6 0; ð27dÞ

where A ¼ rh4=3
0 ĜG0ð0; 0Þ.

Case h0 ¼ 0. We now consider the solution of Eqs.

(12a) and (12b) assuming that h0 ¼ 0. On looking for the

appropriate scaling of the boundary-layer near X ¼ 0,

we obtain the following similarity transformations:

WðX ; Y Þ ¼ X 1=2F ðX ; fÞ;
hfðX ; Y Þ ¼ X 1=2GðX ; fÞ; f ¼ Y =X 1=2 ð28Þ

and on applying these transformations, Eqs. (12a) and

(12b) for the fluid region become

F 00 � 1

2
fG0 þ 1

2
G ¼ �X

oG
oX

; ð29aÞ

G00 þ 1

2
ðFG0 � F 0GÞ ¼ X F 0 oG

oX

�
� G0 oF

oX

�
: ð29bÞ

A.Z. Vaszi et al. / International Journal of Heat and Mass Transfer 45 (2002) 2777–2795 2781



The boundary conditions (13a)–(13d) for 06X 6 1 are

now given by

F ¼ 0; G0 ¼ 1

r
ohs

oy
on f ¼ 0; ð30aÞ

F 0 ! 0; G ! 0 as f ! 1; ð30bÞ

where Eq. (13b) has been omitted to be used in the

equations for the plate region. Further, Eq. (14) is au-

tomatically satisfied by the choice of the similarity

variables (28).

On letting X ! 0, we obtain the system of ordinary

differential equations

F 00 � 1

2
fG0 þ 1

2
G ¼ 0; G00 þ 1

2
ðFG0 � F 0GÞ ¼ 0; ð31Þ

which have to be solved subject to the boundary con-

ditions (30a) and (30b), and their solution provides the

initial conditions for the equations in the fluid region.

This time there is no singularity near the origin with

respect to hs that satisfies Eq. (8c) (now given in ðX ; yÞ
coordinates) subject to the boundary conditions (9b),

(9e) and (9f), which now become

hs ¼ X 1=2G on y ¼ 0; 06X 6 1; ð32aÞ

hs ¼ 1 on y ¼ �k; 06X 6 1; ð32bÞ

ohs

oX
¼ 0 on X ¼ 0; �k6 y6 0; ð32cÞ

ohs

oX
¼ 0 on X ¼ 1; �k6 y6 0; ð32dÞ

where it should be noted that the boundary condition

(32d) has been introduced as a symmetry condition on

the central vertical line of the plate.

As in the 0 < h0 6 1 case, we introduce the variable n̂n
and then Eq. (24) for the plate region (with hs replacing

hI

s ) becomes Eq. (26) (again, with hs replacing hI

s ),

whilst the boundary conditions (32a)–(32d) become

hs ¼ n̂n3=4G; on y ¼ 0; 06 n̂n6 1; ð33aÞ

hs ¼ 1 on y ¼ �k; 06 n̂n6 1; ð33bÞ

ohs

on̂n
¼ 0 on n̂n ¼ 0; �k6 y6 0; ð33cÞ

ohs

on̂n
¼ 0 on n̂n ¼ 1; �k6 y6 0: ð33dÞ

Approximate one-dimensional solution for 0 < h0 6 1.

In order to estimate the average conjugate boundary

temperature, hb, and the average Nusselt number, Nu,
in the situation when Ra � 1, we have developed an

approximate one-dimensional solution for the present

problem, assuming the heat flow to be one-dimensional

in the plate.

Assuming that the heat flow is one-dimensional in the

plate, and using Eq. (21) we obtain

hfðX ; 0Þ � 1

k

� �
k ¼ Ra1=3

h4=3
0

X 2=3
ĜG0ðX ; 0Þ for 06X 6 1:

ð34Þ

Defining the conjugate boundary temperature as

hbðX Þ ¼ hfðX ; 0Þ, and the average conjugate boundary

temperature as hb ¼
R 1

0
hbðX ÞdX and integrating over

06X 6 1 on the left half of the plate, we obtain

k
k
ðhb � 1Þ ¼ 3Ra1=3h4=3

0 ĜG0ðX ; 0Þ; where 0 < X < 1:

ð35Þ

Replacing h0 by hb and ĜG0ðX ; 0Þ by ĜG0ð0; 0Þ, Eq. (35)
reduces to

k
k
ðhb � 1Þ ¼ 3Ra1=3h

4=3

b ĜG0ð0; 0Þ: ð36Þ

On noting that ĜG0ð0; 0Þ < 0, we set c ¼ �3ðk=kÞRa1=3

ĜG0ð0; 0Þ and Z ¼ h
1=3

b , so that Eq. (36) becomes

FcðZÞ � cZ4 þ Z3 � 1 ¼ 0: ð37Þ

Eq. (37) has only two turning points (at Z ¼ �ð3=4cÞ
and Z ¼ 0), so it is clear that there can be at most three

real solutions. However, since Fcð�1Þ ¼ Fcð1Þ, there
are only two real solutions possible. Having FcðZÞ > 0 as

Z ! �1 and Fcð0Þ ¼ �1, one of these solutions lies in

the range �1 < Z < 0, whilst the other lies in the range

0 < Z < 1, considering the fact that Fcð1Þ ¼ c > 0. Thus,

the unique solution for hb as a function of c may be

found using a straightforward Newton–Raphson tech-

nique.

Defining the local Nusselt number as

NuðX Þ ¼ � ohf

oy

� �
y¼0

for 06X 6 1

and the average Nusselt number as

Nu ¼
Z 1

0

NudX ;

using the transformations (11), (15) and (20), we obtain

for the local Nusselt number the following expression

NuðX Þ ¼ �Ra1=3
h4=3
0

X 2=3
ĜG0ðX ; 0Þ for 06X 6 1: ð38Þ

On integrating expression (38) over the range 06X 6 1

and again replacing h0 by hb and ĜG0ðX ; 0Þ by ĜG0ð0; 0Þ, we
obtain for the average Nusselt number the expression
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Nu ¼ �3Ra1=3h
4=3

b ĜG0ð0; 0Þ; ð39Þ

where hb is obtained from the solution of Eq. (37).

4. Mathematical formulation for Ra values O(1)

To obtain a solution for any Rayleigh number which

is Oð1Þ, the governing equations (8a)–(8c) along with the

boundary conditions (9a)–(9f) and (10a) and (10b) have

to be solved numerically. The method employed is

similar to that employed by Vynnycky and Kimura [19].

We first recast the equations for the fluid (8a)–(8c) into

elliptical coordinates ðn; gÞ, with the advantage that the

region near the plate, and in particular near the corners

of the plate, is magnified. These coordinates are related

to the Cartesian coordinates as x ¼ cosh n cos g and

y ¼ sinh n sin g, where 06 n < 1 and �p6 g < p. Con-
sidering the fact that the full problem is symmetrical

with respect to the axis of symmetry at x ¼ 0 and the fact

that the elliptical coordinates are only required in the

fluid region, the calculations have been performed in the

region xP 0.

As in the boundary-layer formulation, described in

Section 3, in order to provide a more accurate solution

for the equations in the plate, in particular close to the

edges of the plate, the transformation n̂n ¼ 1� ð1� xÞ2=3
is applied to the Eq. (8c). It should be noted that the

boundary-layer calculations were performed in the re-

gion x6 0, which was more suitable from an analysis

point of view.

In elliptical coordinates, Eqs. (8a) and (8b) become

o2w
og2

þ o2w

on2
¼ Ra

ohf

og
cosh n sin g

�
� ohf

on
sinh n cos g

�
;

ð40aÞ

o2hf

og2
þ o2hf

on2
¼ ow

og
ohf

on
� ow

on
ohf

og
ð40bÞ

with the boundary conditions (9a)–(9f) applied for the

fluid region now given by

w ¼ 0; hf ¼ hs

on n ¼ 0 which is y ¼ 0; 06 x6 1; ð41aÞ

ohs

oy
¼ 1

k sin g
ohf

on

on n ¼ 0 which is y ¼ 0; 06 x6 1; ð41bÞ

w ¼ 0;
ohf

og
¼ 0

on g ¼ 0 which is y ¼ 0; xP 1; ð41cÞ

w ¼ 0;
ohf

og
¼ 0

on g ¼ p
2

which is x ¼ 0; y P 0: ð41dÞ

In practice, the boundary conditions at large distances

from the finite plate are as in Eqs. (6a) and (6b) but

mathematically we have to solve the problem in a finite

region of space. On the outer boundary, which compu-

tationally has to be placed at a finite distance from the

heated flat plate, we have fluid flowing both into and out

of the region. At the inflow boundary we have the fluid

coming into the solution domain at the ambient tem-

perature but in the situation when the fluid is leaving the

solution domain we expect to have a very small normal

temperature gradient on this boundary. Thus, inflow

and the outflow boundary conditions are used when

un 6 0 and un > 0 at the outer boundary, respectively,

which are given by

ow
on

! 0; hf ! 0 as n ! 1; 06 g6
p
2

ð42aÞ

and

ow
on

! 0;
ohf

on
! 0 as n ! 1; 06 g6

p
2
; ð42bÞ

respectively, where the expressions for the velocity

components are given by

un ¼
1

M

ow
og

; ug ¼ � 1

M

ow
on

; ð43Þ

where M ¼ ðcosh2 n sin2 g þ sinh2 n cos2 gÞ1=2.
Eq. (8c) for the plate region in the ðn̂n; yÞ co-ordinate

system becomes

4

9
ð1� n̂nÞ o

2hs

on̂n2
þ 2

9

ohs

on̂n
þ ð1� n̂nÞ2 o

2hs

oy2
¼ 0 ð44Þ

with the boundary conditions written for the plate re-

gion as follows:

ohs

oy
¼ 1

k sin g
ohf

on
on y ¼ 0; 06 n̂n6 1; ð45aÞ

hs ¼ 1 on y ¼ �k; 06 n̂n6 1; ð45bÞ

ohs

on̂n
¼ 0 on n̂n ¼ 0; �k6 y6 0; ð45cÞ

ohs

on̂n
¼ 0 on n̂n ¼ 1; �k6 y6 0; ð45dÞ

where it should be noted that the boundary condition

(9f) at x ¼ �1 has been eliminated and the boundary

conditions (41d) and (45c) introduced as symmetry

conditions at x ¼ 0.
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5. Numerical techniques

Solution for Ra � 1, 0 < h0 6 1. The solution of the

coupled equations for the fluid and the plate regions is

obtained by an iterative method. First, the equations for

the fluid region subject to their initial and boundary

conditions are solved numerically by a modification of

the second-order accurate finite-difference technique

proposed by Merkin [22], where an initial estimate for hs

is required at the conjugate boundary. Then the equa-

tion for the plate region, and its boundary conditions

were approximated by second-order accurate finite dif-

ferences over a grid used to discretise the solid plate

region, which is the region {06 n̂n6 1, �k6 y6 0}, and a

prescribed number of iterations were processed on the

resulting algebraic system of equations by the SOR it-

eration process, where the function ĜG0 required in the

boundary conditions at f̂f ¼ 0 was obtained from the

results provided by the fluid equations, and the values of

hIðmÞ
s were used as an estimate for the solution for hI

s ,

with m denoting the iteration order. The values for hs

were obtained from the results for hI

s and by evaluating

the function ĥhs, and then a combination of these values

and the previous estimate for hs applied in the solu-

tion of the fluid equations was used instead of the esti-

mate for hs for solving again the fluid equations, where

the relation hðmþ1Þ
s ¼ hðmÞ

s þ Roðhs � hðmÞ
s Þ was employed,

where Ro is a relaxation factor in the outer iteration

procedure (it should be noted that at this point the

relation hIðmþ1Þ
s ¼ hIðmÞ

s þ Roðhs � hIðmÞ
s Þ was also em-

ployed). The above process of successive temporary so-

lutions of the equations for the fluid and those for the

plate was repeated until the maximum temperature dif-

ference in the plate between two successive iterations,

defined by

Dhðmþ1Þ
s ¼ max

06 i6M ;06 j6N
jðhsÞðmþ1Þ

i;j � ðhsÞðmÞi;j j ð46Þ

was smaller than some prescribed value �, where M þ 1

and N þ 1 are the numbers of the mesh points in the n̂n
and the y directions, respectively, on the grid used to

discretise the plate region.

In order to describe the solution procedure, the al-

gorithm used is as follows:

(i) Set m :¼ 0; Estimate hð0Þ
s

(ii) Solve the equations which provide the initial condi-

tions for the equations for the fluid region, to pro-

vide F̂F ð0; f̂fÞ and ĜGð0; f̂fÞ as solution
(iii)

1. Solve the fluid equations subject to their bound-

ary conditions using ĜGð0; f̂fÞ and the values of

hðmÞ
s given at the conjugate boundary; Provide

F̂F and ĜG as temporary solution; Set

F̂F ðmþ1Þ :¼ F̂F , ĜGðmþ1Þ :¼ ĜG

2. Process a number of iterations in the discre-

tised form of the equations for the plate and

their boundary conditions, using the values of

ĜG0 at the conjugate boundary as calculated from

ĜG and the values of hIðmÞ
s as an estimate for

the solution for hI

s ; Provide hI

s as temporary so-

lution

3. Calculate hs, hs :¼ ĥhs þ hI

s

4. Set hðmþ1Þ
s :¼ hðmÞ

s þ Roðhs � hðmÞ
s Þ; Set hIðmþ1Þ

s ¼
hI

ðmÞ

s þ Roðhs � hIðmÞ
s Þ

5. Set m :¼ mþ 1

6. If DhðmÞ
s P �, then go back to step (iii)(1), other-

wise continue to step (iv)

(iv) Set hs :¼ hðmÞ
s , F̂F :¼ F̂F ðmÞ, ĜG :¼ ĜGðmÞ

(v) Provide solutions of the coupled equations given by

F̂F , ĜG and hs.

Solution for Ra � 1, h0 ¼ 0. The iterative method em-

ployed for the solution of the coupled equations in this

case was similar to that described for 0 < h0 6 1, and we

present the algorithm used as follows:

(i) Set m :¼ 0; Estimate hð0Þ
s ;GðX ; 0Þ

(ii)

1. Process a number of iterations in the discretised

form of the equations for the plate and their

boundary conditions using the values of G at

the conjugate boundary and the values of hðmÞ
s

as an estimate for the solution for hs; Provide

hs as temporary solution

2. Set hðmþ1Þ
s :¼ hðmÞ

s þ Roðhs � hðmÞ
s Þ

3. Solve the equations for the fluid subject to their

initial and boundary conditions using the values

of ðohs=oyÞðmþ1Þ
as calculated from hðmþ1Þ

s ; Pro-

vide F and G as temporary solution; Set

F ðmþ1Þ :¼ F , Gðmþ1Þ :¼ G
4. Set m :¼ mþ 1

5. If DhðmÞ
s P �, then go back to step (ii)(1), other-

wise continue to step (iii)

(iii) Set hs :¼ hðmÞ
s , F :¼ F ðmÞ, G :¼ GðmÞ

(iv) Provide solutions of the coupled equations given by

F, G and hs.

Solution for Ra values Oð1Þ. To obtain a finite-dif-

ference approximation of the equations for the fluid and

the equation for the solid plate region, and their corre-

sponding boundary conditions, the fluid region f0 6

g6 p=2; 06 n < n1g and the solid plate region f0 6

x6 1; �k6 y6 0gwere discretised, where n1 is the value

set for the outer boundary in the n direction, and this

approximation resulted in an algebraic system of equa-

tions both for the fluid and the plate regions.

The solution of the coupled plate and fluid equations

is obtained by an iterative method similar to those em-

ployed for the boundary-layer solutions, namely
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(i) Set m :¼ 0; Estimate hð0Þ
s , wð0Þ, hð0Þ

f

(ii)

1. Process a number of iterations by the SOR iter-

ative process in the discretised form of the equa-

tions for the fluid and their boundary conditions,

using the values of hðmÞ
s given at the conjugate

boundary and the values of wðmÞ and hðmÞ
f as esti-

mates for the solution for w and hf ; Provide w
and hf as temporary solution

2. Set wðmþ1Þ :¼ wðmÞ þ Ro1ðw � wðmÞÞ, hðmþ1Þ
f :¼

hðmÞ
f þ Ro1ðhf � hðmÞ

f Þ
3. Process a number of iterations by the SOR iter-

ative process in the discretised form of the equa-

tions for the plate and their boundary conditions

using the values of ðohf=onÞðmÞ given at the con-

jugate boundary as calculated from hðmÞ
f and

the values of hðmÞ
s as an estimate for the solution

for hs; Provide hs as temporary solution

4. hðmþ1Þ
s :¼ hðmÞ

s þ Ro2ðhs � hðmÞ
s Þ

5. Set m :¼ mþ 1

6. If maxfDwðmÞ;DhðmÞ
f ;DhðmÞ

s gP �, then go back to

step (ii)(1), otherwise continue to step (iii)

(iii) Set w :¼ wðmÞ, hf :¼ hðmÞ
f , hs :¼ hðmÞ

s

(iv) Provide solutions of the elliptic equations given by

w; hf and hs.

The maximum difference between two successive it-

erations of the streamfunction and the temperature is

defined as in (46), with w and hf replacing hs, and M þ 1

and N þ 1 are the numbers of the mesh points in the g
and the n directions, respectively, on the grid used to

discretise the fluid region. The relaxation parameters Ro1

and Ro2 have been introduced as control parameters

which restrain the diffusion from any rapid changes in

the streamfunction and the fluid temperature, and in the

temperature in the solid plate, respectively. The values of

hðmÞ
s on the conjugate boundary (step (iii)(1)) are re-

quired at some mesh points of the grid used for the fluid

region, however, they are given at the mesh points of the

grid used for the plate region, thus linear interpolation

was used between the values of hðmÞ
s ð�; 0Þ given at the

latter mesh points in order to obtain the required value

of hðmÞ
s ð�; 0Þ. The values of ðohf=onÞðmÞð0; �Þ (step (iii)(3))

were obtained in a similar way.

6. Results and discussion

Boundary-layer solution. The limiting values for the

parameter r were set to lie between 0.01 and 100. Using

k ¼ 1 for r ¼ 10, the 0 < h0 6 1 formulation provided

results for h0 close to zero, therefore the parameter

ranges 0:016 r6 10 and 56 r6 100 were investigated

by the two different formulations.

In the course of the solution for 0 < h0 6 1 when

k ¼ 1, the procedure was found to converge rapidly for

values of rK 0:2 using no relaxation, i.e. Ro ¼ 1, whilst

for rJ 0:2 the relaxation factor had to be decreased to

provide convergent solutions. Thus Ro ¼ 0:5, 0.1 and

0.01 were used for the parameter values r ¼ 0: _33, 1 and 5

and 10, respectively. When h0 ¼ 0 then the procedure

produced convergent solutions rapidly for rJ 10 using

no relaxation (r ¼ 10, 20 and 100 were investigated),

whilst for r ¼ 5 the relaxation factor had to be de-

creased to 0.5. When k ¼ 0:1, the same relaxation fac-

tors were used for 0 < h0 6 1 as when k ¼ 1, whilst for

h0 ¼ 0 the solution was investigated for the parameter

values r ¼ 10, 20 and 100, and no relaxation was re-

quired. Both for k ¼ 1 and 0.1 it was found that the

computational time of the solution of the coupled

equations increases considerably as r increases in the

0 < h0 6 1 formulation and increases as r decreases in

the h0 ¼ 0 formulation.

When 0 < h0 6 1, the estimate for hð0Þ
s was taken to be

hð0Þ
s ¼ 1, whilst in the case when h0 ¼ 0 the estimates for

hð0Þ
s and Gð�; 0Þ were taken to be hð0Þ

s ðn; yÞ ¼ �ðy=kÞ and
Gð0Þð�; 0Þ ¼ 0. In both situations 500 iterations were

processed in the SOR iterative procedure employed for

the equations in the plate region and in these equations a

relaxation factor Rp ¼ 1:95 was used. In the outer iter-

ative procedure for solving the coupled equations, the

looping process was repeated until DhðmÞ
s < 10�8.

When k ¼ 1, the values of f̂f1 ¼ 10 for r < 1, f̂f1 ¼
7:5 for 16 r < 10 and f̂f1 ¼ 5 for r ¼ 10 in the 0 <
h0 6 1 formulation and the values of f1 ¼ 17 for r ¼ 5

and f1 ¼ 22 for 5 < r6 100 in the h0 ¼ 0 formulation

were used for the location of the outer edge of the

boundary-layer to obtain the results presented in this

paper. It was found that an increase by approximately

30% in these values did not produce graphically distin-

guishable variations in the scaled non-dimensional fluid

velocity uðx; yRa1=3Þ=Ra2=3 and the temperature hfðx;
yRa1=3Þ profiles (using Ra ¼ 1000), which were calculated

as a function of the scaled variable yRa1=3. Using the

same mesh locations on the horizontal n̂n and X direc-

tions, then a 41� 41 grid in the plate region, and 101

mesh points in the f̂f or f directions in the fluid region

were employed, as it was found that the doubled grid

sizes for both regions again produced no significant

variation in the fluid velocity and temperature profiles

premised. Similar calculations were performed to ensure

accurate results when k ¼ 0:1 and the values of f̂f1 ¼ 10

for r < 1, f̂f1 ¼ 7:5 for 16 r < 5 and f̂f1 ¼ 5 for 5 6

r6 10 in the 0 < h0 6 1 formulation and the value of

f1 ¼ 22 for 106 r6 100 in the h0 ¼ 0 formulation were

set for the location of the outer edge of the boundary-

layer, and a 41� 11 grid and a number of 101 mesh

points in the f̂f or f direction were used to discretise the

plate and the fluid regions.

The solution of the problem in the limiting case

when k ¼ 0 has been obtained by assuming a plate of

zero thickness which has the constant non-dimensional
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temperature of the unity, such that only the equations

for the fluid region have to be solved. In this situation in

the boundary-layer formulation there is no parameter to

vary, whilst in the numerical solution the only parameter

of the problem is the Rayleigh number. In the situation

when the formation of a boundary-layer is assumed, the

equations to be solved permit similarity solutions, see

[7], whilst the numerical solution of the problem has

been obtained by a modification of the method de-

scribed in Section 4, when only the equations for the

fluid region were considered.

Fig. 2 shows the variation of (a) the non-dimensional

fluid velocity, uðx; yRa1=3Þ= Ra2=3, and (b) the tempera-

ture, hfðx; yRa1=3Þ, as a function of the scaled variable

yRa1=3 when x ¼ �0:2507, for the following values of r:
0.01, 0.1, 0.2, 0: _33, 1, 5, 10, 20 and 100 when the

parameter k ¼ 1. The results for 0:016 r6 10 and

56 r6 100, obtained by using the 0 < h0 6 1 and the

h0 ¼ 0 formulations, are plotted by the continuous and

by the dashed lines, respectively. Results for k ¼ 0 have

been obtained when the plate is considered to have a

zero thickness such that the temperature at the conju-

gate boundary equals unity, and these results were

graphically almost indistinguishable from those ob-

tained for k ¼ 1 and r ¼ 0:01. The results for r ¼ 5 and

r ¼ 10, as obtained by using both formulations, show

very good agreement both for the fluid velocity and the

temperature, which validates the use of the h0 ¼ 0 for-

mulation for values of rJ 5.

In the classical problem, the formation of a bound-

ary-layer above a heated semi-infinite thin plate main-

tained at a constant temperature Tc whilst the fluid

temperature outside the boundary-layer is T1, the non-

dimensional fluid velocity is assumed to be proportional

to the power of the Rayleigh number Ra1=3, which itself

depends on the temperature difference Tc � T1. Hence

in the conjugate problem, we must assume that the

non-dimensional fluid velocity depends directly on the

non-dimensional conjugate boundary temperature. There-

fore, considering that the non-dimensional conjugate

boundary temperature hb, which is defined as hbðxÞ ¼
hsðx; 0Þ, �16 x6 0, decreases from 1 to 0 as r increases

from 0 to 1, we expect the overall fluid velocity in the

boundary-layer to decrease as r increases, in particular

in the region close to the finite plate. This is indicated

by the fluid velocity profiles plotted in Fig. 2(a). In ad-

dition, since less heat is transmitted to the fluid as r
increases, it is clear that the temperature in the bound-

ary-layer decreases, see Fig. 2(b).

However, for high values of r the thermal conduc-

tivity of the fluid must be much higher than the thermal

conductivity of the solid, so that the heat conduction

effects become more pronounced in the fluid region.

Therefore we expect the boundary-layer thickness to

increase, and this is indicated by the fact that, see

Fig. 2(a), for a larger value of r (e.g. r ¼ 100) the fluid

velocity decreases slower as the distance from the fi-

nite plate increases, than for a smaller value of r (e.g.

r ¼ 1).

Fig. 3 shows the non-dimensional conjugate bound-

ary temperature, hbðxÞ, as a function of the non-di-

mensional distance, x, for (a) k ¼ 1, and (b) k ¼ 0:1 and

for r ¼ 0:01, 0.1, 0.2, 0: _33, 1, 5, 10, 20 and 100. As for the

fluid velocity and the temperature profiles from Fig. 2,

in Fig. 3(a) (k ¼ 1) for the non-dimensional conjugate

boundary temperatures there is also a good match be-

tween the results obtained by using the 0 < h0 6 1 and

the h0 ¼ 0 formulations, as indicated by the continuous

and the dashed lines, respectively, for both the param-

eter values r ¼ 5 and r ¼ 10. Further, the non-dimen-

sional conjugate boundary temperature, hb, is close to

zero in the vicinity of x ¼ �1, i.e. h0 is close to zero for

r ¼ 5 and for r ¼ 10. Therefore we can conclude that

the appropriate threshold value of r for which the h0 ¼ 0

formulation can be used, instead of the 0 < h0 6 1 for-

mulation, is r ¼ 5.

Fig. 2. (a) The fluid velocity, uðx; yRa1=3Þ=Ra2=3, and (b) the fluid temperature profiles, hf ðx; yRa1=3Þ, as functions of yRa1=3 for k ¼ 1 and

r ¼ 0:01, 0.1, 0.2, 0: _33, 1, 5, 10, 20 and 100 when x ¼ �0:2507. The continuous and dashed lines show the results obtained by the

0 < h0 6 1 and the h0 ¼ 0 formulations, respectively, when k ¼ 1.
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When k ¼ 0:1, the non-dimensional conjugate bound-

ary temperatures obtained for the 0 < h0 6 1 and the

h0 ¼ 0 formulations for r ¼ 10 are in a good agreement,

and the temperature h0 is close to zero for this value of r.
Therefore for k ¼ 0:1 it is appropriate to use the h0 ¼ 0,

rather than the 0 < h0 6 1 formulation, for values of

rJ 10. It should be noted that, in spite of the fact that

the value of the parameter k has a relatively greater

change, i.e. from k ¼ 1 to k ¼ 0:1, the threshold value

for r for which the h0 ¼ 0 formulation may be used,

rather than the 0 < h0 6 1 formulation, is not very sen-

sitive to this change. Further, the non-dimensional

conjugate boundary temperatures obtained for k ¼ 0:1
were found to be higher than those obtained for k ¼ 1,

for a fixed value of the parameter r, and this indicates

that the effect of a change in the plate aspect ratio k is

similar to the effect of a change in the parameter r, when
controlling the heat diffusion through the fluid. There-

fore decreasing k and keeping r fixed has the same effect

as decreasing r and keeping k fixed, i.e. more heat is

conducted to the fluid.

In addition, Fig. 3 indicates that for the larger plate

aspect ratio, k ¼ 1, the temperatures at the fluid–solid

interface are much closer to being linear in x than for the

situation k ¼ 0:1. In particular, although these temper-

atures increase rapidly, both for k ¼ 1 and k ¼ 0:1, close
to the left edge of the finite plate, i.e. close to x ¼ �1, the

rate of increase is much greater for k ¼ 0:1. This dem-

onstrates that the decrease of the plate aspect ratio has

the effect of smoothing the rapid changes in the tem-

perature at the fluid–solid interface.

Approximate one-dimensional solution. The average

conjugate boundary temperature, hb, plotted in Fig. 4,

can be obtained by solving Eq. (37), and they may be

collapsed onto one curve, regardless of the values of Ra,

k and k, and depend only on the value of the parameter

c. In turn, the results for Nu can be obtained from the

expression (39) and they depend on c and Ra. Despite

the approximate nature of this analytical approach, it

provides an engineering perspective from which it is

easy to obtain approximate results for hb and Nu, which,
as shown later in this section, compare extremely well

with both the boundary-layer solutions and the full

numerical solutions. It should be noted that on solv-

ing the equations which provide the initial conditions

for the equations for the fluid region, it was found that

ĜG0ð0; 0Þ ¼ �0:430031, which compares well with the re-

sults obtained by Cheng and Chang [7], who found that

ĜG0ð0; 0Þ ¼ �0:4299.
Numerical solution. Whilst in the boundary-layer

formulation there are two parameters, namely r and k,
in the full formulation the number of the parameters is

Fig. 3. The non-dimensional temperature on the conjugate boundary, hbðxÞ, as a function of x, when (a) k ¼ 1, and (b) k ¼ 0:1 for

r ¼ 0:01, 0.1, 0.2, 0: _33, 1, 5, 10, 20 and 100. The continuous and dashed lines show the results obtained by the 0 < h0 6 1 and the h0 ¼ 0

formulations, respectively.

Fig. 4. The average conjugate boundary temperature, hb, as a

function of the parameter c.
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three, namely, Ra, k and k. The calculations for the

numerical solution have been performed in the fluid

region f06 n < 1; 06 g6 ðp=2Þg and in the finite plate

region f06 x6 1; �k6 y6 0g, but all the solutions are

presented in the regions in the left side of the axis of

symmetry, x ¼ 0, i.e. f06 n < 1; ðp=2Þ6 g6 pg and

f�16 x6 0; �k6 y6 0g, in order to compare them

with the solutions obtained by using the boundary-layer

formulation.

When solving Eqs. (40a) and (40b) and (41a)–(41d)

in the fluid region, an appropriate location for infinity

had to be chosen in order to take account of the overall

heat-transfer characteristics. As a representative value

for the location of infinity, we have chosen its position

in the x direction, x1, which is related to the location of

the infinity in the n direction, n1, by the relation x1 ¼
coshðn1Þ. The appropriate location of the infinity

boundary was investigated for different values of the

Rayleigh number in the range of 16Ra6 100 and for a

given value of Ra the value chosen for the location of

infinity proved to be very important when calculating

the overall heat-transfer. In order to achieve a numerical

solution which was independent of the location of the

infinity boundary condition, the mean Nusselt number,

Nu, and the mean fluid velocity, ub, along the conjugate

boundary, were calculated for different values of x1.
First, the value of x1 was set to be x1g2:5, then this

value was doubled, and this procedure was repeated

until the results found for both Nu and ub agreed within

about 1% for two successive values of x1.
In order to find a solution which is independent of

the mesh size, then some arbitrary grid size was chosen

and calculations were performed with this grid size and

with the doubled grid size and again, if the values cal-

culated for Nu and ub agreed within about 1% then the

grid was considered appropriate to provide an accurate

solution. In these calculations the value of the ratio of

the thermal conductivities of the solid and the fluid, k,
was taken to be k ¼ 1000 and k ¼ 1 which were con-

sidered as limiting values for the parameter k.
Although the quantities Nu and ub show character-

istics of the heat transfer and of the flow only at the

conjugate boundary, we considered that if the results for

these quantities obtained by using different parameters

of the problem are accurate, i.e. they agree within about

1%, then the solutions obtained by using the latter pa-

rameters will provide accurate results for all the domain

inspected and this is because all the heat transfer and

fluid flow characteristics depend strongly on the pro-

cesses which take place at the conjugate boundary, i.e.

on the heat conducted through the conjugate boundary.

Thus it was found that for k ¼ 1 the value pairs

of (x1, Mg � Nn þMn̂n � Ny)¼ð160:110; 80� 120þ 80

� 40Þ, (20:035; 80� 120þ 80� 40) and ð2:577; 80� 80

þ 80� 40Þ, for the location of the infinity boundary and

for the grid sizes used for Ra ¼ 1, Ra ¼ 10 and RaP 100,

respectively, are appropriate both when k ¼ 1 and

k ¼ 1000. Hence for any 16 k6 1000 these numerical

parameter values were used to obtain all the results

presented in this paper for Ra ¼ 1, Ra ¼ 10 and

RaP 100. The results presented for k ¼ 0:1 were ob-

tained by using the same numerical parameters, except

that Ny ¼ 10.

The numerical parameters presented indicate that at

the lower Rayleigh numbers the location of the infinity

boundary needs to be set very far from the plate, whilst

for higher Rayleigh numbers it is possible to obtain

an accurate solution using lower values for the location

of the infinity boundary. This is due to the fact that

at lower Rayleigh numbers the convective motion is

slower, and the conduction effects are more pronounced.

This causes the heat to be radially diffused far from the

plate through infinity, whilst at high Rayleigh numbers a

convective boundary-layer develops, and significant heat

transfer takes place in the vicinity of the finite plate in

this boundary-layer region. The values of Nu and ub
increase as Ra increases, and this also indicates the level

of the intensification of the heat transfer processes close

to the plate.

Various relaxation parameters were used in the SOR

iterative procedures employed for the discretised form of

the equations. Thus the relaxation parameters ðRf1 ;Rf2 ;
RpÞ ¼ ð1:8; 1:95; 1:95Þ, ð0:8; 0:8; 1:95Þ, ð0:5; 0:8; 1:95Þ
and ð0:3; 0:3; 1Þ for k ¼ 1000 and ðRf1 ;Rf2 ;RpÞ ¼ ð1:95;
1:95; 1:3Þ, ð1:8; 0:6; 1Þ, ð1:8; 0:4; 0:8Þ and ð1:8; 0:4; 0:8Þ
for k ¼ 1 were used for Ra ¼ 1, 10, 100 and 1000, re-

spectively, where Rf1 , Rf2 and Rp are the relaxation pa-

rameters for the Eqs. (40a), (40b) and (44), respectively,

and they were used as normative values when obtaining

results for other values of the parameters Ra and k.

The relaxation factors Ro1 and Ro2 , which are em-

ployed in the algorithm used for the numerical solution

of the coupled equations, were found to provide con-

vergent solutions when using Ro1 ¼ Ro2 ¼ 1, i.e. there is

no relaxation, for all the Rayleigh numbers investigated.

However, in the solution of the coupled equations when

using the boundary-layer formulation, the relaxation

factors Ro which are introduced in the algorithms em-

ployed for the 0 < h0 6 1 and h0 ¼ 0 formulations, had to

be decreased to smaller values than the unity when the

parameter rwas greater than a certain value. It should be

noted that the relaxation factor Ro used in the boundary-

layer formulation has a similar effect as the relaxation

factor Ro2 which is used in the numerical solution of the

coupled equations, namely the effect of controlling the

heat diffused from the finite plate to the fluid region.

The estimates required in the algorithm employed for

the numerical solution were taken to be hð0Þ
s ¼ 1, wð0Þ ¼ 0

and hð0Þ
f ¼ 0, and both in the equations for the fluid re-

gion and in the heat conduction equation in the finite

plate only one iteration was processed in order to speed

up the information being diffused between the two re-
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gions. Further, the error � used in the stopping criterion

from the outer loop of the algorithm was required to be

set as small as � ¼ 10�8 in order to provide an accurate

solution for all the parameter values investigated.

Comparisons. Table 1 presents results for the average

conjugate boundary temperature, hb, and for the aver-

age Nusselt number, Nu, on the conjugate boundary,

results calculated from the solution obtained by using

the boundary-layer formulation and from the approxi-

mate one-dimensional solution for the values of the

parameter r ¼ 0:1; 1 and 10, and for the plate aspect

ratios k ¼ 1 and 0.1, and calculated from the solution

obtained by using the numerical solution for the corre-

sponding values of k when Ra ¼ 1000, i.e. for k ¼ 100,

10 and 1. It is evident in Table 1 that there is good

agreement between the results obtained by using all the

three solution methods for the parameter values pre-

sented, both for hb and Nu. In particular, the results

obtained for hb and Nu by the approximate one-dimen-

sional solution compare very well with the results ob-

tained by using the boundary-layer and the numerical

solutions despite its approximate approach, and it is

important to mention that for k ¼ 0:1, the agreement for

hb and Nu is still very good, although we expect better

agreement for k ¼ 1 than for k ¼ 0:1. This expectation is

due to the fact that the conjugate boundary tempera-

tures obtained by using the boundary-layer solution are

much closer to being linear in x for k ¼ 1 than for

k ¼ 0:1, see Fig. 3.

Fig. 5 shows the (i) streamlines and (ii) isotherms as

obtained from the numerical solution. The results are

calculated for the Rayleigh numbers Ra ¼ 1 in Figs. 5(a)

and (b), and Ra ¼ 1000 in Figs. 5(c) and (d), and the

ratios of the thermal conductivities in the solid and in

the fluid are k ¼ 1 in Figs. 5(a) and (c), and k ¼ 100 in

Fig. 5(b) and (d). When the Rayleigh number is rela-

tively small, i.e. Ra ¼ 1 in our case (Figs. 5(a) and (b)),

the streamlines show a weak entrainment of the fluid,

which is observed by the small values of the stream-

function. However, for k ¼ 100 the fluid movement is

more intense than for k ¼ 1, as indicated by the closer

contour spacings. The effect of the difference in the

values of k is also indicated by the isotherms, which

show a much greater decrease of the temperature for

k ¼ 100 than for k ¼ 1. In addition, the isotherms indi-

cate the significance of the conduction as opposed to the

convection in the fluid as observed by the uniform

temperature distribution in the fluid region.

As opposed to the situation when the Rayleigh

number is small, when the Rayleigh number is relatively

large, i.e. Ra ¼ 1000 in our case (Fig. 5(c) and (d)), the

streamlines show a much stronger entrainment of the

fluid, and this is observed by the relatively large values

of the streamfunction that occur. The streamline plots

show that the fluid flow is directed from the outer re-

gions of the fluid to the vicinity of the finite plate, where

they are approximately horizontal above the finite plate

before they become almost vertical near the central

vertical plane of the fluid region. This indicates that for

high Rayleigh numbers a boundary-layer develops in the

vicinity of the finite plate, and a vertical jet-like flow is

present in the central region of the fluid. In turn, the

isotherm plots show that for k ¼ 1 the non-dimensional

temperature at the conjugate boundary is approximately

0.1, i.e. almost all of the heat is enclosed in the finite

plate, whilst for k ¼ 100 this temperature is approxi-

mately 0.9, i.e. most of the heat is diffused to the fluid.

We conclude that the effect of the ratio of the thermal

conductivities, k, is more important in the case of large

Rayleigh numbers than for small Rayleigh numbers, as

regards the amount of the heat conducted to the fluid

region. This is most noticeable in the isotherms, but it is

also seen by the much faster decrease of the stream-

function in the fluid region. Based on these observations,

the formation of a boundary-layer is more clearly ob-

served for k ¼ 100 than for k ¼ 1.

Table 1

The average conjugate boundary temperature, hb, the average Nusselt number on the conjugate boundary, Nu, obtained for the plate

aspect ratios k ¼ 1 and k ¼ 0:1

r ¼ 0:1 r ¼ 1 r ¼ 10

hb Nu hb Nu hb Nu

k ¼ 1

1D 0.8896 11.0381 0.4949 5.0507 0.1321 0.8679

B-l 0.8888 10.9093 0.4905 5.0219 0.1270 0.8685

Num 0.8894 10.4548 0.4946 4.9756 0.1262 0.8687

k ¼ 0:1
1D 0.9873 12.6832 0.8896 11.0381 0.4949 5.0507

B-l 0.9869 11.8304 0.8897 10.6197 0.4884 5.0854

Num 0.9873 12.1218 0.8913 10.6752 0.4858 5.1270

When obtained by using the boundary-layer and the approximate one-dimensional solutions, then r ¼ 0:1, 1 and 10. When obtained

by using the numerical solution, then Ra ¼ 1000 and k ¼ 100, 10 and 1.
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Fig. 6 shows the (i) streamline and (ii) isotherm plots

when k ¼ 1, plots of the results obtained from the nu-

merical solution and by the boundary-layer solution.

The results have been obtained using the numerical so-

lution for (a) Ra ¼ 1000 and k ¼ 100, (b) for Ra ¼ 1000

and k ¼ 10, and (c) for Ra ¼ 1000 and k ¼ 1, and from

the boundary-layer solution for the corresponding val-

ues of r, i.e. for r ¼ 0:1, 1 and 10. The results obtained

by using the numerical solution and by the boundary-

layer solution are plotted by the continuous lines and by

the dashed lines, respectively.

The streamlines for the numerical solution indi-

cate that after the fluid is entrained from outside the

boundary-layer then it accelerates in the boundary-layer

and the flow has a jet-like structure near the central

vertical plane, whilst the streamline plots for the

boundary-layer solution show a flow structure which is

approximately parallel to the finite plate. This difference

in the flow structure is due to the fact that the numerical

solution takes account of the symmetry at the central

vertical plane, whilst in the boundary-layer solution the

boundary-layer developed in the left side of the central

Fig. 5. (i) Streamlines and (ii) isotherms, as calculated from the numerical solution for Ra ¼ 1 and 1000, k ¼ 1 and 100 and k ¼ 1.
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vertical plane does not take account of the boundary-

layer present on the right side of the central vertical

plane, which opposes the flow.

In the finite plate region the results for the tempera-

ture fields are in a good agreement, as indicated by the

isotherms. In the fluid region the boundary-layer solu-

tion is a good approximation for the numerical solution

in the range �1K xK � 0:1, both for the flow and for

the temperature fields, especially in the region close to

the finite plate, whilst in the range �0:1K x6 0, near the

central vertical plane, there can be no agreement since

two quite different flow regimes are assumed by the two

different formulations.

The (a), (b) and (c) in Fig. 6, for k ¼ 100, 10 and 1,

respectively, indicate that for �1K xK � 0:1 the

agreement between the results both for the flow and the

temperature fields in the fluid region deteriorates with

decreasing values of k, and this is due to the less intense

heating of the fluid by the finite plate when k decreases,

i.e. the boundary-layer assumption becomes less valid.

However, in the region close to the finite plate there is

good agreement for all three values of k.
The assumption made in the solution of the bound-

ary-layer equations that the flow is at rest on the left side

of the finite plate for x6 � 1, has been shown to be

appropriate, since the boundary-layer and the numerical

Fig. 5 (continued)
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solutions obtained for Ra ¼ 1000, i.e. for a boundary-

layer regime, are in a good agreement close to x ¼ �1.

Fig. 7 shows (i) the conjugate temperature hbðxÞ, and
(ii) the localNusselt numberNuðxÞ, as functions ofx,when
k ¼ 1 for (a) r ¼ 0:1, (b) r ¼ 1 and (c) r ¼ 10, obtained

from theboundary-layer and the numerical solutions.The

numerical results were obtained for theRayleigh numbers

Ra ¼ 300, 600 and 1000 and for the corresponding values

of k (k ¼ 66:9433, 84.3433 and 100 when r ¼ 0:1).
These plots show that as the ratio of the thermal

conductivities of the finite plate and the fluid, k, de-

creases, and the Rayleigh number remains the same, i.e.

the value of r decreases in the boundary-layer solution,

then the agreement between the numerical and the

boundary-layer results reduces both for the temperature

and the Nusselt number at the conjugate boundary. The

agreement between the results for hbðxÞ and NuðxÞ from
the boundary-layer solution and the numerical solution

for Ra ¼ 1000 is very good for r ¼ 0:1 (see Fig. 7(a)) in

all the range �16 x6 0, for r ¼ 1 (see Fig. 7(b)) the

matching is good up to about x ¼ �0:07, whilst for

r ¼ 10 (see Fig. 7(c)) a very good match can be con-

sidered only up to about x ¼ �0:5, but a reasonably

good match up to about x ¼ �0:1 is observed.

As observed in Table 1, there is a good agreement for

hb and Nu for r ¼ 0:1, 1 and 10 (k ¼ 1), and this is also

confirmed by Fig. 7. Although the results for hb and Nu

plotted for r ¼ 10 (see Fig. 7(c)) have a relatively large

variation near x ¼ 0 when calculated by the numerical

solution when Ra ¼ 1000, compared to the case when

they are calculated by the boundary-layer solution, the

good agreement for hb and Nu for r ¼ 10 is due to the

averaging that takes place for hb and Nu in the range

�16 x6 0.

In all three situations presented, i.e. for r ¼ 0:1, 1
and 10, the agreement is better for Ra ¼ 1000 than for

Ra ¼ 300 and Ra ¼ 600, but even for the latter cases the

agreement appears to be good. Thus the boundary-layer

formulation may be used, with confidence, over a wide

range of values of Ra, particularly for RaP 300.

Fig. 8 shows the (i) streamline and (ii) isotherm plots

of the results obtained for k ¼ 0 by the numerical solu-

tion when Ra ¼ 1000 and by the boundary-layer solu-

tion using Ra ¼ 1000 when scaling the variable y, and

they are plotted by the continuous lines and by the da-

shed lines, respectively.

As discussed earlier in this section, (a), (b) and (c) in

Fig. 6 indicate that for �1K xK � 0:1 the agreement

between the results obtained both for the flow and the

temperature fields in the fluid region improves with in-

creasing values of k for the plate aspect ratio, k ¼ 1. This

is due to the more intense heating of the fluid by the finite

plate with increasing values of k, which indirectly implies

increasing values of the temperature of the conjugate

boundary. However, in the limiting case of k ¼ 0 we

assume that the conjugate boundary has the temperature

of unity, therefore we expect that in this case the agree-

ment between the results obtained by using the bound-

ary-layer and the numerical solutions improves even

more, and this is clear from the plots shown in Fig. 8.

Fig. 6. (i) Streamlines, and (ii) isotherms, calculated for k ¼ 1. The continuous and dashed lines show the results obtained from the

numerical solutions and the boundary-layer solutions, respectively.
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7. Concluding remarks

In this paper, three methods have been developed in

order to investigate the phenomenon of free convection

in a porous medium above a heated finite plate in the

conjugate case when the Rayleigh number is high and a

boundary-layer flow develops above the finite plate.

These three methods, namely a boundary-layer solution,

an approximate solution which assumes that the heat

conduction in the plate is one-dimensional, and a nu-

merical solution of the full equations in a finite region of

space, provided results which were in very good agree-

ment. A detailed examination of the conjugate effects

was given by the boundary-layer and the numerical so-

lutions, showing that the thickness of the finite plate, k,
and the so-called conjugate parameter, k, both play an

important role in the heat-transfer processes in the

boundary-layer.

It is important to investigate the phenomenon of

convection for Ra values Oð1Þ, and the numerical solu-

tion proved to provide a very effective solution model

for this problem. In this solution process the equations

for the fluid and the plate regions are not solved sepa-

rately at every step of the overall iteration, as is common

in conjugate problems, instead the solution process

evolves synchronically in the fluid and the plate regions,

furnishing results much more rapidly. Further, the rep-

resentation of the fluid region in elliptical coordinates

provides a very effective survey method, which natu-

rally magnifies the region close to the plate. In addi-

tion, the use of inflow and outflow boundary conditions

employed at the outer boundary allows a considerable

Fig. 6 (continued)
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reduction in the fluid region investigated for high

Rayleigh numbers, which is extremely important since

in this case a very refined mesh is required close to the

plate.

Fig. 7. (i) The conjugate boundary temperature, hbðxÞ, and (ii) the local Nusselt number NuðxÞ, as functions of the distance along the

finite plate, x, for (a) r ¼ 0:1, (b) r ¼ 1, and (c) r ¼ 10 obtained by the boundary-layer and the numerical solution for the Rayleigh

numbers Ra ¼ 300, 600 and 1000.
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